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--On the postulation of inviscid potential flow. theoretical analyses have been performed for 
heat transfer to liquid metals flowing along a row of equally-spaced spheres the pitch-to-diameter ratio 
of which ranges from unity (touching spheres) to infinity (a single sphere in the fluid stream). The following 
explicit expressions for the average Nusselt number were obtained : 

For uniform surface temperature : 7% = Ll > i Pe* (&/R”)*. 

For uniform surface heat flux: %, = lMf35 Pet (#:/R3)*. 

It was revealed that the surface velocity potential factor, ~~/~‘, which appears in the above equations is 
solely a function of the pitch-to-diameter ratio. A theoretical method has been developed for evaluating 
the numerical values of &fR3 utilizing the vector potential recently obtained by Michael [9]. In connection 
with this. an equation describing the velocity potential along a row of spheres has been obtained. Numerical 
values of &/R3 were determined by means of an IBM digital computer. It was found to vary from 2c) for 

flow past a single sphere to c 15639 for flow along a row of touching spheres. 

NOMENCLATUFCE 

vector potential; 
series expansion c~fficients in Le- 
gendre polynomials as defined by 
equation (16); 
heat capacity [Btu/lbdegF] ; 
expansion coeffkients in the stream 
function given by equation (5) ; 
diameter of a sphere [ft] ; 
thermal ~ndu~tivi~ [Btu/ft s degF] ; 
as defined by equation #la); 
an integer describing the upper 
limit of the coefficient, C, ; 
local Nusselt number, hD/K [dimen- 
sionless] ; 
average Nusselt number for constant 
surface temperature case, %DjK [di- 
mensionless] ; 
average Nusseh number for constant 
surface heat flux, ?&D/K [dimension- 
less] ; 

* This work was performed under the auspices of the 
U.S. Atomic Energy Commission. 

average Nusselt number based upon 
ho h$/K [dimensionless] ; 
pitch [ft] ; 
associated Legendre polynomials ; 
P&let number, pCVD/K [dimen- 
sionless] ; 
radius of a sphere [ft] ; 
= (1 + 41*j* - 4rZj cos @* ; 
temperature fdegF] ; 
uniform approaching temperature 

[degFl ; 
temperature excess on the surface 
of spheres [degF] ; 
temperature excess [degF] ; 
uniform approaching velocity [ft/s] ; 
velocity vector ; 
local heat-transfer coefficient in the 
spherical coordinates [Btu/ft* 
s degF] ; 
local heat-transfer coefficients in 
the #‘--$ coordinates [Btu/ft3 
s degF1; 
average heat-transfer coeffkients for 
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constant surface temperature case 
[Btu/ft2 sdegF] ; 
local heat-transfer coefficients for 
constant surface heat flux case [Btu/ 
ft2sdegF]; 
average heat-transfer coefficients, 
= (1/(47cR’)~~ h,ds where s is the 

surface area (Ef the sphere) [Btu/ft2 
s degF] ; 
average heat-transfer coefficients 
based on 8,, = q”/&, [Btu/ft2 
s degF] ; 
integers ; 
surface heat flux for constant surface 
temperature case in the &$ co- 
ordinates [Btu/ft3 s] ; 
surface heat flux in the spherical 
coordinates [Btu/ft’ s] ; 
surface heat flux in the +‘-1c/ co- 
ordinates [Btu/ft3 s] ; 
radial distance variables as defined 
in Fig. 1 [ft]; 
velocity components in the r and 8 
direction, respectively. 

Greek symbols 

I;: 

AR = P/2 [ft]; 
an angle in the spherical coordinates 
[degree or rad] ; 

r,, as defined by equation (19); 

% a parameter ; 

?l> 1 + 2Lj; 

123 1 - 2Ljj; 
8, angle measured from the front stag- 

nation point of a sphere on the 
x-y plane [degree or rad] ; 

0 0. local surface temperature excess for 
constant surface heat flux case 
[degFl ; 

e, average surface temperature excess 
= (1/4nR2) js 8, ds where s is the 

surface area’of the sphere [degF]; 
e,, angles as defined in Fig. 1 [degree or 

rad] ; 

P/D, pitch to diameter ratio [di- 
mensionless] ; 
as defined by equation (40d) ; 
= 3.1416.. . ; 
density of fluid [lb/ft3] ; 
a parameter ; 
hydrodynamic potential function 

[ft2/sl ; 
@p/V [ftl ; 
c$ at the rear stagnation point of a 
sphere [ft] ; 
as defined by equation (9) [ft”]; 
$’ at the rear stagnation point of a 
sphere [ft”] ; 
stream function [ft”/s] ; 
Y/V [ft’]; 
as defined by equation (40b). 

INTRODUCTION 

THEWXKXL prediction of the characteristics of 
energy transport between orderly arrayed 
spheres and liquid metals flowing past them is 
important because of its possible application in 
the design of certain types of nuclear reactors 
such as the ordered-bed reactor, whose fuel 
consists of spherical beads. In general, strictly 
analytical treatment of such a three-dimensional 
heat-transfer problem involves a great deal of 
difficulty due to the complex flow patterns 
associated with the configurations of the spheres. 
As a step toward a better understanding of such 
intricate problems, the present paper considers 
the heat-transfer problem for one of the funda- 
mental flow geometries, i.e. for flow along a row 
of equally spaced spheres where the spacing 
ranges from zero to infinity. For this geometry, 
both velocity and temperature profiles become 
axially symmetric. and the problem is simplified 
to some extent. As shown in previous papers 
[7. 81, the assumption of inviscid flow is essenti- 
ally valid for analyzing the heat transfer to 
liquid metals flowing past submerged bodies, 
except at very high flow rates. This is mainly 
due to the fact that the high thermal conductivi- 
ties of liquid metals overshadow eddy trans- 
port of heat even in the wake region. As pointed 
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out previously, it has been experimentally 
observed [l, 51 that, for cross-flow of liquid 
metals such as mercury or liquid sodium past a 
cylindrical rod, the local heat-transfer coeffr- 
cient gradually decreases toward a minimum as 
the rear stagnation point is approached. For 
ordinary fluids, this may not be so because eddy 
transport of heat in the wake region may become 
significant enough to cause a substantial in- 
crease in the local heat”transfer coefficient at the 
rear part of the cylinder. For flow of liquid 
metals past spheres, a situation similar to that 
for flow past cylinders can be expected to 
prevail. Since the assumption of inviscid poten- 
tial flow could lead to theoretical equations 
which agree well with experimental results as 
shown previously [7] the same assumption will 
be made in this analysis. Other conventional 
assumptions imposed in the previous analyses 
also apply to the present work. 

The stream function for potential flow along 
a row of spheres has been obtained by Howland 
[6] utilizing certain types of periodic functions 
and recently by Michael [9] who made use of 
an el~tromagnetic analogy and obtained the 
solution in terms of a vector potential A (the 
velocity V = -curl A). In the present heat- 
transfer analysis, the latter velocity field was 
utilized because it has the advantage of relatively 
rapid convergence even for the spheres with 
zero spacing. The expressions for both local 
and average Nusselt numbers have been derived 
for the boundary conditions of unifo~ surface 
temperature and uniform surface heat flux, the 
two most commonly encountered thermal 
boundary conditions. Analogous to the case 
of flow across a cluster of rods [7] these ex- 
pressions contain a surface velocity potential 
factor, &/R3, a quantity which is intimately 
related to the velocity potential difference 
between the front and rear sta~ation points of 
a sphere focated inside the row. An explicit 
equation has been derived for this quantity and 
numerical values were obtained with the aid of 
a high-speed digital computer. The computa- 
tional results are presented as a function of the 

pitch-to-diameter ratio, P/D, and the effect of 
sphere spacing on the local and average Nusselt 
numbers is examined and discussed. 

THEORETICAL ANALYSES 

Consideration is given to the potential flow 
of fluid along a row of spheres as illustrated in 
Fig. 1. It is apparent that both the velocity and 
temperature fields are rotationally symmetric 
about the X-X’ axis so that only variations in the 
radial and azimuthal directions are significant. 
Furthermore, by virtue of the periodic symmetry 
in the axial direction, it suffices to consider the 
velocity fields around the sphere within a half 
of the shaded area (0 < 8 < n/2) shown in 
Fig. 1. For temperature fields, however, the 
entire shaded area (0 < 8 < 7c) must be taken 
into consideration. Because of the spherical 
boundary, it is advantageous to adopt the 
spherical coordinates. Under the aforementioned 
assumptions, the energy equation can be written 
as: 

1 
+ a sinOF ~- 

r2 sin 0 at3 ( )I a0 . (1) 
where the velocity components, u, and uB can. 
in principle, be obtained by solving the Laplace 
equation : 

divgrad@ = 0 (2) 

for this particular flow geometry and then 
making use of the relationships: 

f sip 1 ay 
v@=---= ___ 

T de rsine ar‘ (4) 

As mentioned earlier, the velocity lield for 
potential flow along a row of spheres has been 
obtained by Michael [9] in terms of a vector 
potential. His solution can be visualized more 
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FIG. 1. Geometry for flow along a row of spheres. 

j=2 

easily in terms of the stream function, #, which, 
after a slight modification, can be expressed as 

N 00 

* = - 3 r2 sin’ e + 
ZJ 

G 
j=-m 

X 
R2n+3 I sin 0 Pi,, 1 (cos ej) 

2n+2 (5) 
‘J 

In the above equation, Pan+l is the associated 
Legendre polynomials and rj and 0, are defined 
in Fig. 1. The coefficients for the infinite series, 
C,, were evaluated by Michael for several values 
of L = (P/D). Additional results for other values 
of I are tabulated in Table l.* Owing to the 
complex expression of the velocity fields, the 
direct mathematical solution of equations 
(l-5) is arduous, if not impossible, to obtain. A 
considerable simplification can be achieved, 
however, if the independent variables are trans- 
formed from r and 0 to Y and @. This is the so- 
called “Boussinesq transformation”, and it 
transforms, in effect, the three dimensional 
energy equation of the form: 

V . VT = (K/Cp) div grad T (6) 

into the equation of the form: 

g = ($) [($)2$ 

v21y aT a2T -- 
+ (v4p)2 ay + W 1 ’ (7) 

* The author wishes to thank Dr. Paul Michael of the 
Brookhaven National Laboratory for supplying these 
additional computational results. 

Thus, applying the Boussinesq transformation, 
equation (1) can finally be transformed to [2] : 

vg=$ [;-2sin28$]. (8) 

Geometrically, the transformation causes the 
circular boundary to be mapped into a line 
segment and gives rise to a flow with constant 
unidirectional velocity, V. Defining a new inde- 
pendent variable, +‘, by the relationship : 

4’ = jr2sin28d4 (9) 

and changing the temperature variable by letting 
T’ = T - Tfi equation (8) can further be simpli- 
fied to the following equation. 

v aT’ = K a2T’ 

w cp at+b2 ’ (10) 

The two consecutive changes of variables thus 
transform the energy equation written in terms of 
the r-8 coordinates to that in terms of the 
#--$ coordinates. Since mathematical solutions 
to equation (10) for various boundary condi- 
tions are available [3] attempts can now be 
made to seek the desired temperature solutions 
on the +‘-+ plane and then transform them 
back to those on the r-8 plane. Before pro- 
ceeding to obtain the temperature solutions, 
however, the analytical evaluation of the surface 
velocity potential factor, &JR3 will first be 
discussed. Determination of the numerical values 
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Table 1. The constants, C, in equation (5) 

1 = 1.1 1= 1.2 I = 1.3 

n G n G n G 

0 0.41101 
1 -0.014473 
2 -0aO24499 
3 -3.5703 x 1o-4 
4 -2.8215 x lo-’ 
5 7.9719 x 1o-6 
6 5.7585 x lo+ 
7 2.3812 x lO+ 
8 8.2472 x lo-’ 
9 2.5823 x lo-’ 

10 7.4375 x 1o-8 
11 1.9423 x lo-’ 
12 4.3122 x 1O-g 
13 6.1529 x lo-” 
14 -9.8216 x lo-” 

0 

1 

8 
9 

0.42740 0 044055 

-1.0356 x lo--’ 1 -7.3837 x lo-” 

-16094 x 10-s 2 -1.01711 x 10-J 
-2.4157 x 1O-4 3 -1.3988 x lo-’ 
-3.2708 x lo-’ 4 -1.8654 x 10-S 
-3.3772 x 1O-6 5 -2.3461 x lo-” 
-1.4708 x lo-’ 6 -2.6308 x lo-’ 

1.3864 x lo-’ 

5.8769 x 1O-8 
1.8688 x lo-* 

I= 14 Iz = 1.6 I = 1.8 

n C” n G n C” 

n 

0.45 1006 0 
-5.3067 x 10-a 1 
-64245 x lo-’ 2 
-7.8601 x 10-S 3 
-9.5174 x 10-e 4 
-1.1291 x lO+ 5 
-1.2971 x lo-’ 6 

I = 2.2 

G n 

0.46592 0 0.47553 
-2.8535 x 1O-3 1 -1.6245 x 1O-3 
-2.6859 x 1O-4 2 -1.2144 x 1o-4 
-2.5748 x 1O-5 3 -9.2649 x 1O-6 
-2.4702 x 1O-6 4 -7092 x lo-’ 
-2.3608 x lo-’ 5 -5.4259 x lo-& 
-2.2428 x 1O-8 6 -4.1445 x 1o-9 

a. = 2.4 Iz = 2.6 

G n G 

0 0.48628 0 0.48936 0 0.49160 
1 -6.1092 x 1O-4 1 -3.9809 x 1o-4 1 -2.6807 x lo’+ 
2 -30659 x 10-s 2 -1.6794 x 1O-5 2 -9.6378 x lo+ 
3 -1.5718 x 1O-6 3 -7.2387 x lo-’ 3 -35406 x lo-’ 
4 -80949 x 1O-8 4 -3.1346 x lo-” 4 -1.3069 x 10-s 

1. = 2.8 1= 30 I = 3.5 

n C” n G n G 

0 049325 0 049450 0 0.49652 
1 -1.8571 x lo-* 1 -1.3187 x 1O-4 1 -6.1264 x 1O-5 
2 -5.7576 x 1O-6 2 -3.5617 x 1O-6 2 -1.2158 x lo+ 
3 -1.8241 x lo-’ 3 -9.8301 x 1O-8 3 -2.4655 x 1O-8 
4 -5.8062 x lo+ 4 . -2.7260 x lo+ 4 -5.0237 x lo-lo 

I = 40 

n G 

0 0.49766 
1 -3.1496 x 10-s 
2 -4.7856 x lo-’ 
3 -74303 x 1o-9 
4 -1.1592 x lo-lo 
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of this factor is of vital importance in connection 
with the present heat-transfer analyses. 

A. Analytical calculation of the surface velocity 
potential factor, &JR3 

For heat transfer in flow along a row of 
spheres, the theoretical Nusselt numbers con- 
tain, as will be shown later, a proportional 
factor, &/R3, which will be called the surface 
velocity potential factor. This quantity arises 
as a consequence of the coordinates transforma- 
tions and is related to the velocity potential on 
the surface of the spheres, 4, by means of the 
following equation : 

L 

&JR3 = i 
s 

sin’ 9 d& (11) 

It may be noted that e&ation (11) is obtained 
by substituting r = R in equation (9) integrating 
between the limit (0, rr). and then dividing 
through by R3. Analytical evaluation of the 
above integral apparently requires an explicit 
expression of the velocity potential, 4, which was 
obtained in this study by making use of equation 
(5). To derive the theoretical expression for 4, 
the functional relationships among the variables. 
r. 8, rj and Bj were first explored. From Fig. 1, it 
is evident that the following relationships hold : 

r sin 0 = rj sin i3, for allj values (12) 

rjCOS8j + rcos.8 = 2(jIaforj 2 1 (13) 

rjCOS8j - rcos6 = 2IjIaforj < 0 (14) 

where a = 1R. Combining the above three equations and solving for rj in terms of r and 0. the 
following equation results : 

rj = J(r2 + 4azj2 - 4ajr COS 0) (15) 

for all j values. For mathematical convenience, the cosine terms, cos 0, in the associated Legendre 
polynomials appearing in equation (5) were converted to sine terms by writing: 

Pi,+ 1 (COS ej) = sinej i A”,sinzkej (16) 
k=O 

Evaluation of the coefficients, A;, was carried out, for each n, by the binomial expansion of the 
Legendre.polynomials. As the values of n and k increase, the coefficients, Ai, become considerably 
larger, requiring accordingly higher computational accuracies. The computed values, for instance, 
are:Ag= l,Ai=6,A:= -7.5,Az= 15,A:= -52.5,Ai=39.375,...,AA4g4.349724 x 102,.... 

A:: E 1.6241348 x log, etc. 
By combining equations (4, 5. 16) and carrying out the required differentiations and integra- 

tions, the following theoretical expression for the velocity potential, 4, for potential flow along a row 
of spheres finally results : 

(jj=_ s -&$dtI = rcos8 + 2 GR2n+:zmgAZ{2(k + l)r2k+’ 
n=O 

s sin2kf’ 8 d0 
2nt2k+3 

‘j 
- (2n + 2k + 3)r2k+3 

r sin2k+ ’ 8 d0 

J 
2nt2kt5 

'j 

+ 2aj(2n + 2k + 3)r2k+2 s sin2k+ '8 cos 8 d0 
,++ZktS 

> 
(17) 

J 
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where r, is defined by equation (15). The integrals appearing in the above equation can be evaluated 
analytically with the aid of recurrence formulas. It is interesting to note that, for flow past a single 
sphere, for which j = 0, C,, = f, C, = 0 (n = L2.3, . . ), and Ai = 1, equation (17) simplifies to : 

which is the well known velocity potential equation for flow past a single sphere [lo]. 
The purpose at present is to derive an analytical expression for the surface velocity potential 

factor, &/R3. The following equation was ultimately obtained by combining equation (11) with 
equation (17) and performing the required integrations. 

lz 

&/R3=k 
s 

sin’Bd+=k 

0 0 n=O j=-m kc0 

x 

+ 2Aj(2n + 2k + 3) 
s 
0 n=O j=-00 k=O 

II II 

sin2k+ 1 e de 

R?+2k+3 
- (2n + 2k + 3, 

s 

sinzk+ 3 e de 
@n+Zk+5 

0 
J 

where 1 = P/D, and Rj = ,/( 1 + 4A2j2 - 4Aj cos 0). In simplifying the above equation, the following 
equality, obtainable by use of recurrence formulas, has been used : 

A I 

2Aj(2n + 2k + 3) 
sinzk+ 3 e cos e de 

R++Zk+5 
=2(k+ 1) 

J s 
“;;:::,“,;” - (2k + 3) ’ 

sin2k+3 e de 

i s 
@n+Zk+3 ’ 

J 
0 0 

The expressions for rl: in equation (19) are, for example, 

r, = 2 
I 

s - (2n + 3) 

0 J ~s~~“ae-~s~:~~e=MZ:+II(~-~) 0 0 ’ 

1 

K 

1 1 1 1 1 

- 
-- 

2A2j2(2n + 1)(2n - 1) II:“-’ + $-’ 1 + 2Aj(zj(2n _ 3) 
( 
??"_" - 2n-3 ?2 I 

1 1 1 1 1 - 
2A2j2(2n + 1) 

K - - 
tff”+l + @+l ) + 2Aj(2n - 1) ( r$-’ 

1 -I d”- l (20) 

R3 
$=rcose i +2r3 ( ) 

in which ql = 1 + 2Aj, q2 = 1 - 2Aj, and 

II 

r; = 4 
s 

si$;;e - (2n + 5) 

0 
J 

p;;::‘” - p$:+:‘” 

0 0 
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1 

1 1 1 1 1 + 1 

2Aj(2n 5) 
( --- 1 

r$-” VP-5 
+ 

- Aj(2n - 1) 
( --- 

r$-’ r$-’ >) 

1 

I1 ( 

3 1 

+ A2j2(2n + 3) 2L2j2(2n + 1)(2n 

- - 
- 1) l VP-’ + $-i > 1 1 

--- I l’( >) 

1 1 --- 
+ 2Aj(2n - 3) r+” qpe3 + Aj(2n + 1) $+’ qp+i 

2 

[( 

1 1 1 
+ 

A2j2(2n + 1)(2n + 3) 11:“+’ + r$+l > + ( 

1 1 zJj(zj(2n - 1) tl:“_’ -- I tf$“-l etc’ (21) 
Explicit expressions of r; are thus seen to become increasingly complex as k becomes larger. On 
substituting C, = 3, j = 0, Ai = 1, and R, = 1, equation (19) gives, for flow past a single sphere, 
&JR3 = 2-O. For flow along a row of spheres with a pitch-to-diameter ratio of A, numerical values 
of r#&/R’ were computed using equation (19) with the aid of the computer. The pitch-to-diameter 
ratio, A, was varied from unity (corresponding to a row of touching spheres) to infinity (corresponding 
to the flow past a single sphere), while the numerical constants, C,‘s, were taken from Table 1 and [9]. 
To assure satisfactory convergence of the infinite series appearing in equation (19), a sufficient 
number of terms were included in the computation, for each preassigned value of 1. In general, the 
number of terms required in obtaining a converged solution increases as the value of rZ is decreased. 
It was necessary, for instance, to evaluate several hundred of the integrals appearing in equation (19) 
in order to obtain the converged solution corresponding to 1 of unity. the entire computational 
results are tabulated in Table 2. The usefulness of these numerical results will become self-evident 
in the next section. 

Table 2. Calculated values of the 
surface velocity potential factor. 

#k/R3 

15: 
2.0 
199982 

100 1.99939 
50 1.99520 
4.0 149065 
3.5 1.98607 
3.0 1.97798 
2.8 1.97299 
2.6 1.96638 
2.4 1.95745 
2.2 1.94512 
2.0 1.92763 
1.8 1.90212 
1.6 1.86370 
1.5 1.83723 
1.4 1.80402 
1.3 1.76221 
1.2 1.70961 
1.1 1.64405 
1.0 1.56393 
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B. Derivation of Nusselt numbers for flow along a row of spheres 
In the following heat-transfer analysis, it will be assumed that there is no interaction of thermal 

boundary layers for the adjacent spheres. It will also be postulated that a similarity exists between 
the angular dependence of the surface velocity potential variable, 4’, as defined by equation (9), 
for flow along a row of spheres and that for flow past a single sphere. To elaborate on the latter 
assumption, it is convenient to express the velocity potential distribution on the surface of a sphere 
for the latter case by the equation 

(b=Y(l -cos8)=~(1 -cos8), (22) 

where 4,( = 3R) is the velocity potential at the rear stagnation point (0 = II) of the sphere. Combining 
equation (9) with (22) and then dividing through by R3, one obtains: 

sin2Bd4=&(cos3B-3cose+2)=-&(cos3e-3cose+2) (23) 

in which &/R3(= 2&/3R) is the surface velocity potential factor, i.e. $‘/R3 evaluated at the rear 
stagnation point (0 = 7r) of the sphere. Equation (23) thus relates, for flow past a single sphere, 
&/R3 at any angle 0 to that at the rear stagnation point, &/R3. The assumption will now be made 
that equation (23) is also valid for flow along a row of spheres provided that &JR3 in equation (23) 
is replaced by that for flow along the row of spheres being considered. An analogous assumption 
was made previously [7] in extending the heat-transfer analysis for flow past a single rod to that for 
flow across rod-bundles. In fact, the validity of this assumption has been justified by actually 
finding out the angular dependence of &/R3 using equations (9) and (17). Preliminary but laborious 
calculations revealed that this assumption is reasonably valid for most of the rZ values being con- 
sidered. Based upon this and other conventional assumptions made in the previous study [7,8] the 
temperature solutions corresponding to the boundary condition of uniform temperature or uniform 
heat flux on the surface of the spheres have been obtained respectively as follows: 

1. Uniform temperature on the surface of the spheres. For the case in which a uniform temperature is 
maintained on the surface of the sphere, the distribution of the heat flux on the surface can be 
readily obtained by solving equation (10) for this specific boundary condition. It is given as [3] : 

4’W) = T Jwwd4 (24) 

from which 

, W’) = ,/WWW). (25) 

Inasmuch as the above heat-transfer coefficient, h(&‘), is based upon a unit area on the &-Ic/ plane, 
it must be converted to that based on the spherical coordinates, h(B). These two heat-transfer 
coefficients are related by the following equation : 

h(&‘) d& = R2 h(8) sin 8 de. (26) 

Accordingly, if equations (25) and (23) are incorporated into equation (26), one obtains, after 
simplifying 

sin’ 0 (27) 
J(COS~ 8 - 3 cos 8 + 2) 



1702 CHIA-JUNG HSU 

from which the expression for the local Nusselt number can be obtained as 

sin2 0 

J(cos3 8 - 3 cos I9 + 2)’ (28) 

As pointed out earlier, for flow past a single sphere. &JR3 = 2.0, and hence, for this particular case, 
equation (28) reduces to 

3 sin2 0 

NUL(e) = (Jn)Pei J(cos3 e - 3 cos I9 + 2)’ 

To derive the Nusselt number averaged over the entire surface of the sphere, the average heat- 
transfer coeffkient, ‘il, is first obtained. 

f 

sin3 6 de 
o Jccos3 8 _ 3 cos 8 + 2J = W/R3)f WWD)“. (30) 

The expression for the average Nusselt number, G, therefore becomes 

&!e= 
K (31) 

By substituting &JR3 = 2.0 into equation (31), one obtains the average Nusselt number for flow 
past a single sphere. i.e. 

2 
Nu = m Pe+*. (32) 

It is interesting to note that equation (32) agrees exactly with the result of Boussinesq’s analysis for 
heat-transfer to flow past a single sphere (2). In his analysis, however, only the average heat-transfer 
coefficient corresponding to the uniform surface temperature case is given. For flow along a row of 
spheres with variable pitch-to-diameter ratio, the appropriate value of &JR3 to be used in equation 
(3 1) can be found in Table 2. The significance of the analysis presented in the previous section and the 
usefulness of Table 2 thus become obvious. 

2. Uniform heatflux on the surface of the spheres. Consideration is next given to the case where 
uniform heat flux, q”, is maintained on the surfaces of the spheres. Because the heat flux is area- 
dependent, it is necessary to transform q” to that based upon the #--$ coordinates? q” (4’). The 
following relation exists between the two types of heat fluxes: 

q”R’ sin 8 d0 = q”(#) d4’. (33) 

Hence, from equations (33) and (23), 

q”(4’) = q”R2 sin 0 de = 
4R2q” 

d@ 3& sin2 8 (34) 

* The coeffkients for the Nusselt numbers given in Table 1 of [8] are in error because the variable transformation shown 
by equation (9) of this paper was not made. For uniform surface temperature case, the coeffkient should be that given by 
equation (32) in this paper. 
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It is necessary to change the sine term appearing in the above equation to that in terms of 4’. To do 
this, the cosine terms in equation (23) are converted to sine terms, yielding 

Solving the above equation for sin2 8, one obtains 

Substituting this into equation (34) gives 

4R2 
4”(F) = x 

2cos[cos-l{’ -q$ +C}] _ 1: 

(35) 

(36) 

(37) 

The solution of equation (10) corresponding to the surface heat flux distribution given by equation 
(37) can be written as [3] : d’ 

fl,@‘) = (7TpCVK)-* s q”(& - T)-$). 
0 

By substituting equation (37) into equation (38), one obtains 

(39) 

The integral, I, appearing in the above equation can be evaluated analytically by consecutive 
changes of variables in a proper manner. It can be shown that 

(sin-’ K,;) - F(sin-’ K’, <) 

I 

(40a) 
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where F designates the incomplete elliptic integral of the first kind and 

,=,,s-l{2(_c)- 1> =cos-1(c~--y3)} 

K’= J~os(y+#os(;-$] 
and 

(4W 

Combining equation (39) and equation (4Od) thus yields : 

where 

2 
F(e) = 3* &OS (o/3 

_ lr,6) b @-‘I?,;) - F(sin-’ K’.t)l 

and accordingly the local heat-transfer coefficient, h&Q becomes 

(42) 

The heat-transfer coefficient averaged over the surface of the sphere can therefore be obtained as : 

II 25% 

ss 

R2 sin 0 [hAtI)] d/I dtI = - ($) (@) (4#3)3 jk%!&! 

00 0 

from which the following expression for i&n is obtained 

(43) 

The integral appearing in the above equation was evaluated numerically by using Simpson’s rule. 
The average Nusselt number, Go, was finally obtained as: 

Nu, = 1.0035 Pe* (@/R3)* x . WV 

To obtain the expression for K,, the temperature averaged over the surface of the sphere is first 
obtained. 

R2 sin 8 [e,] d/I de = 

00 

F(0) sin 6 de. 
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Consequently, 

1705 

h - c =qJ2xXJ4’n) (KCpV)* t- 
00 D2 

and 

(45) 

Once again, the integral appearing in the denominator of equation (45) was evaluated numerically, 
thus yielding 

%, = O-9 125 Pe* (&/R3)*. (46) 

For flow past a single sphere, &JR3 = 20 so that equations (44) and (46) reduce, respectively, to: 

%, = 1*4192Pe+ (47) 

%, = 1.2904 Pe*. (48) 

DI!XX.JSSION OF RWAJLXS AND CONCLUSIONS 

In Figs. 2 and 3, the variation of the local 
Nusselt number as a function of 8, the angle 
measured, from the forward stagnation point. 
is illustrated for the cases of uniform surface 
temperature and uniform surface heat flux, 
respectively. In both instances, the local Nusselt 
number, Nuti is seen to decrease from a 
maximum value at the forward stagnation 
point to a minimum at the rear stagnation point. 
This agrees qualitatively with the experimental 
observation of Hoe et aI. [S] for cylinders. It 
can also be observed that Nu, in general, 
decreases as the spacing between the spheres is 
reduced. The broken line which is shown for 
comparison in each of these figures displays 
the behavior of NuL corresponding to the case 
of flow past a single circular cylinder [4]. The 
effect of spacing between cylinders cannot be 
shown because no heat-transfer analysis on 
this problem has been known. Comparison of 
the curve for a circular cylinder with that for a 
sphere (P/D = co) reveals that, for the case of 
uniform surface temperature, the variation 
of Nu, is more gradual for the former than for 
the latter. The ratio of Nu, at two angles, 

(Nu& r,J(Nu& 1204 for instance, gives the 
value of ~2 for the cylinder while it is about 
2.8 for the sphere. It can also be perceived that, 
for a constant P&let number, NuL is larger for 
the sphere than for the cylinder in the forward 
sections. This trend is reversed, however, at 
8 x 100”. It should be cautioned that in 
calculating the average Nusselt number for the 
sphere, the local Nusselt number shown in the 
figures is not weighted evenly with respect to 
angle, 0. Unlike the case for a cylinder? the 
sphere does not extend uniformly in the z- 
direction. The weight of NuL, therefore, depends 
upon the local incremental area which can be 
generated by rotating the circle shown in the 
figures around the x-x’ axis. The Nu, at 
8 = 90”, for instance, carries much larger weight 
than those for 6 near 0” or 180”. For a circular 
cylinder, on the other hand, Nu, at any angle 
8 weighs equally with respect to angle. By 
rigorous integration procedure, it was shown in 
the previous section [equation (32)] that for 
flow past a single sphere, the average Nusselt 
number, Nu is equal to 1.128 Pe*, in agreement 
with the result of Boussinesq’s analysis [2]. 
For a circular cylinder, Nu = 1.015 Pe*, as 
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UNIFORM SURFACE TEMPERATURE 

111111111111 III1 ,I[ 

__ SPHERE (PRESENT ANALYSIS) 
(II p/D = aD (3)rn iI.1 

(2)P/D = I.5 (4) P/D = I.0 

-- CIRCULAR CYLINDER, P/D=aO 

olIIll’II”I”“ITu-~ 
0 20 40 60 60 100 120 140 160 I60 

B,ANGLE FROM THE FRONT STAGNATION POINT. DEGREES 

FIG. 2. Illustration of the variation of local Nusselt numbers for constant 
surface temperature case. 

UNIFORM SURFACE HEAT FLUX 

III I I I I I I I I I I I I I I I_ 

~ SPHERE (PRESENT ANALYSIS) - 
( I 1 P/D = (D (3) P/D= 1.1 

(2) P/D = I.5 (4) P/O = I.0 

CIRCULAR ;$ND&R, P/D =a0 j 

FLOW - 

‘1 
0 20 40 60 60 100 120 140 160 160 

8,ANGLE FROM THE FRONT STAGNATION POINT, DEGREES 

FIG. 3. Illustration of the variation of local Nusselt numbers for constant 
surface heat flux case. 

reported by Grosh and Cess [4]. For the case Turning attention to the average Nusselt 
of uniform surface heat flux, it can be noticed number, it can be concluded from equations 
from Fig. 3 that the variation of Nu, is relatively (31, 44, 46), and the computational results 
gradual both for the sphere and for the cylinder tabulated in Table 2 that, for heat transfer to an 
except for the part near the rear stagnation point. inviscid fluid flowing along a row of spheres, the 
where abrupt lowering takes place. Once again, average Nusselt number generally decreases as 
Nu, is seen to be larger for a sphere in the front the spacing between the spheres is reduced. 
part. The reversal in this case, however, takes Significant reduction in the average Nusselt 
place at 0 w 120”. number, however, does not occur until the pitch- 
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to-diameter ratio, P/D, is reduced to about 2.0. 
As mentioned in the previous section, the surface 
velocity potential factor, &/R3, is numerically 
equal to 2.0 for P/D = co. From Table 2, it can 
be noticed that its numerical value does not 
change significantly until P/D is lowered to 
about 2.0. For P/D = 2.0, c&/R3 = 1.9276, and 
this implies roughly 2 per cent reduction in the 
average Nusselt number as compared with the 
case of flow past a single sphere. As P/D con- 
tinues to diminish toward the limiting value 
of l-0, the value of t&/R3 decreases rather rapidly 
and finally reaches the value of 1.5639 for a row 
of touching spheres. This amounts to x 12 per 
cent reduction in the average Nusselt number. 
The relatively rapid decrease in the Nusselt 
number can be reasoned as follows. It should be 
remembered that the present heat-transfer 
analysis has been based upon the assumption 
of potential flow, in which the fluid stream lines 
are considered to be preserved everywhere in 
the flow region including the spaces between the 
spheres. If the spheres are comparatively far 
apart from each other, fluid can obviously dip 
into the space between the spheres. On the 
other hand, if the spacing between the spheres is 
small, the fluid tends to be excluded from the 
region near the x-x’ axis (Fig l), thus forming a 
nearly stagnant region. In fact, according to 
Michael’s analysis [P], the region near the axis 
is essentially stagnant if the row of spheres are 
mutually touching. The formation of this fluid- 
dynamically stagnant region apparently will 
cause deterioration in the over-all heat-transfer 
effect, thus lowing the average Nusselt number. 
The present heat-transfer analysis predicts this 
tendency. Due to the lack of experimental 
information, however, verification of the sound- 
ness of this analysis has to rely upon future 
experimentation. In fact, if the spheres are 
actually touching each other, the postulation of 
negligible interference of thermal boundary 
layers between the adjacent spheres may no 
longer be valid. In this case, some deviation from 

the conclusion of this analysis may result. As a 
final remark, it should be mentioned that the 
validity of approximating the energy equation, 
equation (7) by equation (8) was examined in 
detail by Rigdon [l 11, for flow past a single 
isothermal sphere. According to Rigdon the 
Boussinesq solution based on such an approxi- 
mation falls within 1.5 per cent of the exact 
solution for a P&let number of 500, and the 
deviation between the two solutions does not 
exceed 15 per cent when the P&let number is 
lowered to 50. The Boussinesq solution for a 
single sphere, therefore, seems to be reasonably 
valid in the P&let number range of 5&500. 
The validity of the present analysis is expected 
to be confined within the same P&let number 
range, since the same approximation was made. 
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R&sum&-En supposant que l’boulement est non visqueux et a potentiel on a analys& theoriquement le 
transport de chaleur vers des mttaux liquides s’ecoulant le long dune rang& de spheres egalement espac&s, 
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dont le rapportdupasaudiamttre variedepuisI'unit6(spheresencontact)Pl'infini(une seulesphkedans 
I'tcoulementfluide).Lesexpressionsexplicitessuivantespourlenombre~ Nusseltmoyenonttttobtenues: 

Pour une temperature de surface uniforme :% = 
(J> 

1 Pef ($;/R3)* 
n 

Pour un flux de chaleur de surface uniforme: %, = l,OO35 Pef (ez/R3)* 

On a trouve que le facteur de potentiel de vitesse a la surface, &/R”, qui apparah dans les equations ci- 
dessus est fonction uniquement du rapport du pas au diambtre. On a expose une methode theorique 
d’tvaluation des valeurs numtriques de 6:/R’, en utilisant le potentiel vectoriel obtenu recemment par 
Michael [9]. En liaison avec ceci, on a obtenu une equation dtcrivant le potentiel de vitesse le long d’une 
rang&e de spheres. 

Les valeurs numeriques de #JR3 ont Ctt dttermi&s au moyen dun calculateur numerique IBM. On a 
trouvt qu’elles varient de 2,0 pour I’ecoulement le long d’une sphere unique a environ I5639 pour l%coule- 

ment le long d’une rangee de spheres en contact. 

Znammmmfaasung-Unter der Voraussetzung der reibungslosen Potentialstriimung wird eine theoretische 
Betrachtung tiber den Wlrmetibergang zwischen flilssigen Metallen und einer Reihe von Kugeln, die 
gleichen Abstand von einander haben, angestellt. Das VerhPltnis des Abstandes der Kugelmittelpunkte 
zum Kugeldurchmesser reicht von eins (sich bertlhrende Kugeln) bis unendlich (einzelne Kugel in der 
Striimung). Folgende explizite Gleichungen ftlr die mittlere Nusseltzahl werden angegeben : 

Fiir konstante Wandtemperatur % = 
2 

u> 
n Pef (&/R3)’ 

Fiir konstante WIrmestromdichte ?i$, = 1.0035 Pet (c$:/R”)~ 

Es zeigt sich, dass der Potentialfaktor der Oberfllchengeschwindigkeit 4’JR3, der in den obigen Gleich- 
ungen enthalten ist, nur eine Funktion des Verhaltnisses der Kugelmittelpunktsabstande zum Kugel- 
durchmesser ist. Es wird eine theoretische Methode entwickelt, urn die numerischen Werte von &JR’ 
berechnen zu konnen. Dabei wird das Vektor-Potential beniitzt, das ktlrzlich von Michael [9] angegeben 
wurde. Im Zusammenhang damit wird eine Gleichung angegeben, die das Geschwindigkeitspotential 
entlang der Kugelreihe beschreibt. Zahlenwerte von @JR3 wurden auf einer IBM Rechenanlage bestimmt. 
Die Zahlenwerte liegen zwischen 2,0 fiir die Striimung entlang einer einzelnen Kugel und 1,5639 fiir die 

Strijmung entlang einer Reihe sich bertlhrender Kugeln. 

AUHOTS~~JI--B ~onymennri rreBflaKor0 noToKa nposegefi TeopewvecKui aiianua Tenno- 
o6meeapnna paBEt OTCTOJilltUX Apyr OT npyt'a C@Iep,OMbtBaeMbIX t+tUAKUM MeTaJtJtOM,OTHO- 
cUTenbHbrB mar K0~0pbI~ UaUeUrieTcU OT efirirnirrbr (conpwracatowiecrr c+epbI)no 6eCKOHW 
HOCTU (eAuttuwan c@epa B noToKe ~KUAKOCTU). IIonyqetrn crtenyromrre BbtpameHUtr wui 
Otu?HKU CpeJUierO WiCJta HyCCeJtbTa: AJlfl UaOTef.WtUWCKOU nOB'.?pXHOCTU: 

AJIH paBHOMepHOr0 TenJtOBOrO nOTOKa Ha nOBepXHOCTU: 

NUD = 1,0035 Pet (4, R3)) 

HaUAeKO, 4~0 B yKaaaKHnx ypamtertwrx Koat#U~neUT noTeHr.mana CKOPOCTU Ua nosepx- 
HOCTU 4,/R= UBJIIIeTCR i#yHKltUeU TOJlbKO OTHOCUTeJtbHOrO mara. &tH OtWHKU YUCJU?HHbtX 
aKaWHUU +,/RJ paapa60TaH TeOpeTIVleCKU# MeTOg, B KOTOpOM UCnOJIbaOBaH HeAaBHO IIOJly- 

4eHHbIfi B [g] nOTeHnUan BeKTOpa. B CBRaU C aTUM BbrBeAeHO ypaBHeHUe, OllUCbIBNOW?f? 

noTerrnuan CK~P~CTU nflonb pemenw c@ep. WicnetiHbte affaqefwt vL’/Ra BWtUCJtHJIUCb Ha 
CWTHOUMamUHe.Hai~eHO,~TOOHUUaMeHRH)TCROT 2,0JW nOTOKa,OMbtBatomerOeAUHU9HytO 

c@epy,~o w 1,5639 AJIFI npeAenbtioro cnysarr KacaHufl c$ep. 


