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Abstract—On the postulation of inviscid potential flow, theoretical analyses have been performed for
heat transfer to liquid metals flowing along a row of equally-spaced spherm, the pitch-to-diameter ratio
of which ranges from unity (touching spheres) to infinity (a single sphere in the fluid stream). The following
explicit expressions for the average Nusselt number were obtained:

J— 2
For uniform surface temperature: Nu = ( \/ ~)Pe* (P/R3.
n

For uniform surface heat flux: Nu, = 1-0035 Pet (¢,/R%)?}.

It was revealed that the surface velocity potential factor, $,/R>, which appears in the above equations is

solely a function of the pitch-to-diameter ratio. A theoretical method has been developed for evaluating

the numerical values of ¢,/R? utilizing the vector potential recently obtained by Michael [9]. In connection

with this, an equation describing the velocity potential along a row of spheres has been obtained. Numerical

values of ¢,/R* were determined by means of an IBM digital computer. It was found to vary from 20 for
flow past a single sphere to #:1-5639 for flow along a row of touching spheres.

NOMENCLATURE Nu,  average Nusselt number based upon
A, vector potential ; hy, h,D/K [dimensionless];
5 series expansion coefficients in Le- P, pitch [ft];
gendre polynomials as defined by Pl,+1, associated Legendre polynomials;
equation (16); Pe, Péclet number, pCVD/K [dimen-
C, heat capacity [Btu/lbdegF]; sionless];
C,, expansion coefficients in the stream R, radius of a sphere [ft];
function given by equation (5); R, = (1 + 44%j% — 4)jcos H)};
D, diameter of a sphere [ft]; T, temperature {degF];
K, thermal conductivity [Btu/ftsdegF]; T, uniform approaching temperature
K, as defined by equation (40a); [degFT];
N, an integer describing the upper T, temperature excess on the surface
limit of the coefficient, C,; of spheres [degF];
Nu;,  local Nusselt number, hD/K [dimen- T, temperature excess [degF];
. sionless]; v, uniform approaching velocity [ft/s];
Nu, average Nusselt number for constant v, velocity vector;
surface temperature case, hD/K [di- h(9), local heat-transfer coefficient in the
. mensionless]; spherical  coordinates  [Btu/ft?
Nup,  average Nusselt number for constant sdegF];
surface heat flux, h,D/K [dimension- K@), local heat-transfer coefficients in
less]; the ¢4 coordinates [Btu/ft?
* This work was performed under the auspices of the sdegF];
U.S. Atomic Energy Commission. h, average heat-transfer coefficients for
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constant surface temperature case
[Btu/ft*sdegF];

local heat-transfer coefficients for
constant surface heat flux case [Btu/
ft>sdegF];

average heat-transfer coefficients,
= (1/(4nR?) [{ hp ds where s is the

surface area of the sphere) [Btu/ft?
sdegF];

h,. average heat-transfer

based on 8, = q"/9,

sdegF];

integers;

surface heat flux for constant surface

temperature case in the ¢’ co-
ordinates [Btu/ft*s];

q. surface heat flux in the spherical
coordinates [Btu/ft?s];

hp(6).

hipf6),

coefficients
[Btu/ft?

j-k.n,
q'(@"),

q"(¢’)., surface heat flux in the ¢ co-
ordinates [Btu/fts];

rr radial distance variables as defined
in Fig. 1 [ft];

v,.0,. velocity components in the r and 0

direction, respectively.

Greek symbols

a, AR = P/2 [ft];
B. an angle in the spherical coordinates
[degree or rad];
T as defined by equation (19);
", a parameter ;
N1s 1+ 2M;
M2, 1 —24j;
9, angle measured from the front stag-

nation point of a sphere on the
x—y plane [degree or rad];

0y, local surface temperature excess for
constant surface heat flux case
[degF];

8, average surface temperature excess

= (1/4nR?) [{ 0, ds where s is the

surface area of the sphere [degF];
angles as defined in Fig. 1 [degree or
rad];

CHIA-JUNG HSU

A, P/D. pitch to diameter ratio [di-
mensionless];

&, as defined by equation (40d);

, = 3-1416...;

P, density of fluid [Ib/ft®];

T, a parameter;

P, hydrodynamic potential function
[ft*/s];

¢. /v [ft];

3 ¢ at the rear stagnation point of a
sphere [ft];

¢ as defined by equation (9) [ft*];

[ ¢’ at the rear stagnation point of a
sphere [ft*];

P, stream function [ft3/s];

¥ P/V [1t2];

w, as defined by equation (40b).

INTRODUCTION

THEORETICAL prediction of the characteristics of
energy transport between orderly arrayed
spheres and liquid metals flowing past them is
important because of its possible application in
the design of certain types of nuclear reactors
such as the ordered-bed reactor, whose fuel
consists of spherical beads. In general, strictly
analytical treatment of such a three-dimensional
heat-transfer problem involves a great deal of
difficulty due to the complex flow patterns
associated with the configurations of the spheres.
As a step toward a better understanding of such
intricate problems, the present paper considers
the heat-transfer problem for one of the funda-
mental flow geometries, i.e. for flow along a row
of equally spaced spheres where the spacing
ranges from zero to infinity. For this geometry.
both velocity and temperature profiles become
axially symmetric, and the problem is simplified
to some extent. As shown in previous papers
[7. 8], the assumption of inviscid flow is essenti-
ally valid for analyzing the heat transfer to
liquid metals flowing past submerged bodies,
except at very high flow rates. This is mainly
due to the fact that the high thermal conductivi-
ties of liquid metals overshadow eddy trans-
port of heat even in the wake region. As pointed
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out previously, it has been experimentally
observed [1, 5] that, for cross-flow of liquid
metals such as mercury or liquid sodium past a
cylindrical rod, the local heat-transfer coeffi-
cient gradually decreases toward a minimum as
the rear stagnation point is approached. For
ordinary fluids, this may not be so because eddy
transport of heat in the wake region may become
significant enough to cause a substantial in-
crease in the local heat-transfer coefficient at the
rear part of the cylinder. For flow of liquid
metals past spheres, a situation similar to that
for flow past cylinders can be expected to
prevail. Since the assumption of inviscid poten-
tial flow could lead to theoretical equations
which agree well with experimental results as
shown previously [7] the same assumption will
be made in this analysis. Other conventional
assumptions imposed in the previous analyses
also apply to the present work.

The stream function for potential flow along
a row of spheres has been obtained by Howland
[6] utilizing certain types of periodic functions
and recently by Michael [9] who made use of
an electromagnetic analogy and obtained the
solution in terms of a vector potential A (the
velocity V= —curl A). In the present heat-
transfer analysis, the latter velocity field was
utilized because it has the advantage of relatively
rapid convergence even for the spheres with
zero spacing. The expressions for both local
and average Nusselt numbers have been derived
for the boundary conditions of uniform surface
temperature and uniform surface heat flux, the
two most commonly encountered thermal
boundary conditions. Analogous to the case
of flow across a cluster of rods [7] these ex-
pressions contain a surface velocity potential
factor, ¢,/R% a quantity which is intimately
related to the velocity potential difference
between the front and rear stagnation points of
a sphere located inside the row. An explicit
equation has been derived for this quantity and
numerical values were obtained with the aid of
a high-speed digital computer. The computa-
tional results are presented as a function of the
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pitch-to-diameter ratio, P/D, and the effect of
sphere spacing on the local and average Nusselt
numbers is examined and discussed.

THEORETICAL ANALYSES

Consideration is given to the potential flow
of fluid along a row of spheres as illustrated in
Fig 1. It is apparent that both the velocity and
temperature fields are rotationally symmetric
about the x—x’ axis so that only variations in the
radial and azimuthal directions are significant.
Furthermore, by virtue of the periodic symmetry
in the axial direction, it suffices to consider the
velocity fields around the sphere within a half
of the shaded area (0 <0 < =/2) shown in
Fig. 1. For temperature fields, however, the
entire shaded area (0 < # < n) must be taken
into consideration. Because of the spherical
boundary, it is advantageous to adopt the
spherical coordinates. Under the aforementioned
assumptions, the energy equation can be written

as:
00T K [1 d (zﬁT)
= 5
ro6 Cplridr or

oT
1 é {. 0T
+ r?sin 6 99 (sm 955)] M

v, ?a;
where the velocity components, v, and v, can.
in principle, be obtained by solving the Laplace
equation:

divgrad® =0 2)

for this particular flow geometry and then
making use of the relationships:

oP 1 o¥

v'=5?=rzsin055 @
109 1 oy
ve T r o6 rsin@ or @

As mentioned earlier, the velocity field for
potential flow along a row of spheres has been
obtained by Michael [9] in terms of a vector
potential. His solution can be visualized more
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J=-2

/=0

/=l

FiG. 1. Geometry for flow along a row of spheres.

easily in terms of the stream function, v, which,

after a slight modification, can be expressed as
N x

Y= —4r’sin?0 + C,

n=0

y R**3psin 0 P}, (cosB)
r;n+2 :

()

In the above equation, P}, , is the associated
Legendre polynomials and r; and 6; are defined
in Fig. 1. The coefficients for the infinite series,
C,. were evaluated by Michael for several values
of A = (P/D). Additional results for other values
of A are tabulated in Table 1.* Owing to the
complex expression of the velocity fields, the
direct mathematical solution of equations
(1-5) is arduous, if not impossible, to obtain. A
considerable simplification can be achieved,
however, if the independent variables are trans-
formed from r and 0 to ¥ and . This is the so-
called ‘““Boussinesq transformation™, and it
transforms, in effect, the three dimensional
energy equation of the form:

I

V:-VT = (K/Cp)divgrad T (6)
into the equation of the form:
o _ (K [(ve) 2T
ad  \Cp) |\ve/ ow?
+ ———VZT or + 62—T W)
(V@)2 0¥ 09|

* The author wishes to thank Dr. Paul Michael of the
Brookhaven National Laboratory for supplying these
additional computational results.

Thus, applying the Boussinesq transformation,
equation (1) can finally be transformed to [2]:

2
Va—T— =% I:rzsinzﬂa—’li].

Geometrically, the transformation causes the
circular boundary to be mapped into a line
segment and gives rise to a flow with constant
unidirectional velocity, V. Defining a new inde-
pendent variable, ¢’, by the relationship:

¢ = [r*sin?0d¢ ©)
and changing the temperature variable by letting
T' = T — T, equation (8) can further be simpli-
fied to the following equation.

’ 2
or = £6_72' (10)
op Cp oy
The two consecutive changes of variables thus
transform the energy equation written in terms of
the r—0 coordinates to that in terms of the
¢’y coordinates. Since mathematical solutions
to equation (10) for various boundary condi-
tions are available [3] attempts can now be
made to seek the desired temperature solutions
on the ¢’ plane and then transform them
back to those on the r—f plane. Before pro-
ceeding to obtain the temperature solutions,
however, the analytical evaluation of the surface
velocity potential factor, ¢,/R® will first be
discussed. Determination of the numerical values
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Table 1. The constants, C,, in equation (5)

=11 =12 =13
n C, n C, n C,
0 041101 0 042740 0 044055
LI e I -10356 x 1072 1 —73837 x 107
3 —35703 x 1074 2 —16094 x 1073 2 —101711 x 1073
4 —28275 x 10°° 3 24157 x 107 3 13988 x 1074
S 79719 x 1076 4 32708 x 10~° 4 —18654 x 10°°
6 57585 x 1076 5 3312 x 1076 5 —23461 x 10
7 23812 x 1076 6  —14708 x 10°° 6  —26308 x 107
8 82472 x 1077 7 13864 x 1077
9 25823 x 1077 )
10 74375 x 107 § 58769 x 1073
11 19423 x 107® ? 18688 x 10
12 43122 x 10°°
13 61529 x 10710
14 —98216 x 101!
1=14 i=16 1=18
n C, n C, n C,
0 0451006 0 046592 0 047553
1 —53067 x 103 I —28535 x 1073 1 —16245 x 103
2 —64245 x 1074 2 26859 x 1074 2 12144 x 1074
3 —78601 x 10~° 3 25748 x 10~° 3 92649 x 1076
4 —95174 x 10~ 4 —24702 x 10°° 4 —7092 x 1077
S —11291 x 10-8 5 —23608 x 10~ 5 54250 x 107
6 —12971 x 1077 6  —22428 x 10~* 6  —41445 x 10~
i=22 i=24 1=26
n C, n C, n C,
0 048628 0 048936 0 049160
| —61092 x 10-* 1 —39809 x 10~ 1 —26807 x 1074
2 —30659 x 10~° 2 —1679 x 10°3 2 96378 x 1076
3 —15718 x 1076 3 72387 x 1077 3 35406 x 1077
4 —80949 x 10°° 4 —31346 x 10° 4 —13069 x 10°°
1=28 1=130 1=35
n C, n C, n C,
0 049325 0 049450 0 049652
1 —18571 x 10-4 1 —13187 x 10-* I —61264 x 10~°
2 —57576 x 10~¢ 2 35617 x 1076 2 12158 x 107°
3 18241 x 1077 3 —98301 x 10 3 24655 x 107
4 —58062 x 10~° 4 . —27260 x 10-° 4 50237 x 10710
1=40
n C,
0 049766
1 —31496 x 105
2 47856 x 107
3 74303 x 10~°
4 11592 x 10-10
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of this factor is of vital importance in connection
with the present heat-transfer analyses.

A. Analytical calculation of the surface velocity
potential factor, ¢,/R?

For heat transfer in flow along a row of
spheres, the theoretical Nusselt numbers con-
tain, as will be shown later, a proportional
factor, ¢,/R> which will be called the surface
velocity potential factor. This quantity arises
as a consequence of the coordinates transforma-
tions and is related to the velocity potential on
the surface of the spheres, ¢, by means of the
following equation:

CHIA-JUNG HSU

BIR = & j sin? 0 do,

It may be noted that eauation (11) is obtained
by substituting r = R in equation (9), integrating
between the limit (0, ). and then dividing
through by R3. Analytical evaluation of the
above integral apparently requires an explicit
expression of the velocity potential, ¢, which was
obtained in this study by making use of equation
(5). To derive the theoretical expression for ¢,
the functional relationships among the variables.
r. 8, r; and 0, were first explored. From Fig. 1, it
is evident that the following relationships hold :

(11)

rsinf = rjsin 6;

rjcos 8; + rcos@ = 2|j|laforj = 1
rjcos 8; — rcos § = 2|jlaforj <0

(12)
(13)
(14)

for all j values

where @ = AR. Combining the above threc equations and solving for r; in terms of r and 6, the

following equation results:

r; = (r* + 4a%?

~— 4ajr cos 0) (15)

for all j values. For mathematical convenience, the cosine terms, cos ;, in the associated Legendre
polynomials appearing in equation (5) were converted to sine terms by writing:

P},.1(cos0) = sin@; Y Apsin?o,
k=0

(16)

Evaluation of the coefficients, A}, was carried out, for each n, by the binomial expansion of the

Legendre polynomials. As the values of n and k increase, the coefficients,

% become considerably

larger, requiring accordingly higher computational accuracies. The computed values, for instance,

are: A3 =1,A3 = 6,41 = —7-5, A2 = 15, A = —525, A2 = 39375, ...

A% > 16241348 x 10°, etc.

ALt = 4349724 x 10%,.

By combining equations (4, 5. 16). and carrying out the required differentiations and integra-
tions, the following theoretical expression for the velocity potential, ¢, for potential flow along a row

of spheres finally results:

¢ = jSliegde—rcos0+ZC Rz"”z ZA”{ (k + 1)r2k+t

J=—w k=0

2k+10 9
j‘ ZnvIkT3 —(2n+ 2k + 3)r 2k+3J

+ 20§(2n + 2k + 3) r“‘”j

I sin2k*1 9 d6
r];n+2k+5

r}n+2k+5

e 2k+1
sin Ocos B dﬂ} (17
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where r, is defined by equation (15). The integrals appearing in the above equation can be evaluated
analytically with the aid of recurrence formulas. It is interesting to note that, for flow past a single
sphere, for whichj = 0,Co =3, C, =0(n = 1,2.3,...), and 4] = 1, equation (17) simplifies to:

3
¢=rcos€<1 +%3) (18)

which is the well known velocity potential equation for flow past a single sphere [10].

The purpose at present is to derive an analytical expression for the surface velocity potential
factor, ¢,/R3. The following equation was ultimately obtained by combining equation (11) with
equation (17) and performing the required integrations.

r 2k+3
¢./R> = jsm 9dg = *jsm 9( ) o= - z z Z A"{Z(k +1) Js‘;h”ﬂfo
0
sin?**30do . sin®**3 0 cos 0 d9
—(2n + 2k + 3)ij’kTs* + 24j(2n + 2k + 3)j REnF2k+5 } Z z Z
J
0

j=—o k=0

sin2**1 9 do Fsin?*3 9 do

Al {Z(k + I)JW —(2n+ 2k + 3)J—R;H+zk+_s

J
4] 0

2k+30d9
—j R2n+2k+3 }— Z Z ZA"F" (19)
0

j=-—o k=0

o

where 2 = P/D,and R; = /(1 + 44%* — 4Jj cos 8). In simplifying the above equation, the following
equality, obtainable by use of recurrence formulas, has been used:

. ( sin?**3 9 cos 0 d ( sin?**10do f sinZ¥*3 9 do
24jan + 2k +3) [ ravaes — = 2k + l)jwa— — (2k + 3)jw-
J J

0 0 0

The expressions for I'; in equation (19) are, for example,

~_[sin6de [sin*0d9 [sin0d9 1 1 1
Ig =2 _RJTE;_ - (2n+3) Rjgn+5 - RJ;n+3 l](2n+1) 2n+1 - 'I%n+1
0 0 [}
1 Lo, 1y, 1 1 1
T2+ D@D \ni" T T 03T T 20 =)\ T nf

_ 1 1 + 1 1 1 1 20
212‘]-2(2" ) 2n+1 r,%n+1 22.](2" _ 1) Zn 17 n%n—l ( )

inwhichn, =14 24,97, =1 — 2}, and

A . 3 de . 5 3 . 5
r =4J'sm (7] _on+ 5)‘rsm 6d0_.j~sm 0do
o

2n+5 2n+7 2n+5
R R R
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1 3 1 1
= 2P0n + )2n + ) {2,12j2(2n ~ 1) =3 [Cﬁ"*i*‘ + ngH)
oot ] )

jon — S\ p )] T - D\
Lo { 3 [( Lo, )
27020 + 3) 2057@n + Dn = 1) [\t Tt
N 1 <1~1>]+ 1(1_1)}
24j2n — 3)\n""3 33 An + D\ni*tt girt!

+ 2 1 + 1 + L 1 I t (21)
2Pen + 2n+3) |\n? 1 T 03 ) T 2jen - p\pt T )| o

Explicit expressions of I'; are thus seen to become increasingly complex as k becomes larger. On
substituting C, = 4, j =0, AJ = 1, and R; = 1, equation (19) gives, for flow past a single sphere,
¢/R® = 2:0. For flow along a row of spheres with a pitch-to-diameter ratio of 4, numerical values
of ¢,/R® were computed using equation (19), with the aid of the computer. The pitch-to-diameter
ratio, 4, was varied from unity (corresponding to a row of touching spheres) to infinity (corresponding
to the flow past a single sphere), while the numerical constants, C,’s, were taken from Table 1 and [9].
To assure satisfactory convergence of the infinite series appearing in equation (19), a sufficient
number of terms were included in the computation, for each preassigned value of A. In general, the
number of terms required in obtaining a converged solution increases as the value of A is decreased.
It was necessary, for instance, to evaluate several hundred of the integrals appearing in equation (19),
in order to obtain the converged solution corresponding to A of unity. the entire computational
results are tabulated in Table 2. The usefulness of these numerical results will become self-evident
in the next section.

Table 2. Calculated values of the
surface velocity potential factor,

$./R®
i=P/D ¢./R?
o 20
150 199982
100 199939
50 199520
490 199065
35 198607
30 197798
28 197299
2:6 196638
24 195745
22 194512
20 192763
1-8 190212
16 1-86370
1-5 1-83723
14 1-80402
13 176221
12 1-70961
11 1-64405

1-0 1-56393
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B. Derivation of Nusselt numbers for flow along a row of spheres

In the following heat-transfer analysis, it will be assumed that there is no interaction of thermal
boundary layers for the adjacent spheres. It will also be postulated that a similarity exists between
the angular dependence of the surface velocity potential variable, ¢, as defined by equation (9),
for flow along a row of spheres and that for flow past a single sphere. To elaborate on the latter
assumption, it is convenient to express the velocity potential distribution on the surface of a sphere
for the latter case by the equation

¢=§2§(1 —cosG)=%(l — cos 0), (22)

where ¢,(=3R) s the velocity potential at the rear stagnation point (¢ = =) of the sphere. Combining
equation (9) with (22) and then dividing through by R3, one obtains:

¢
% =%j‘sin26d¢ =%(cos30 —3cos@ +2) =Z%'§(cos39 —3cosf +2) (23)

in which ¢,/R3(= 2¢,/3R) is the surface velocity potential factor, i.e. ¢’/R> evaluated at the rear
stagnation point (§ = n) of the sphere. Equation (23) thus relates, for flow past a single sphere,
¢'/R3? at any angle 0 to that at the rear stagnation point, ¢,/R3. The assumption will now be made
that equation (23) is also valid for flow along a row of spheres provided that ¢,/R> in equation (23)
is replaced by that for flow along the row of spheres being considered. An analogous assumption
was made previously [7] in extending the heat-transfer analysis for flow past a single rod to that for
flow across rod-bundles. In fact, the validity of this assumption has been justified by actually
finding out the angular dependence of ¢'/R? using equations (9) and (17). Preliminary but laborious
calculations revealed that this assumption is reasonably valid for most of the A values being con-
sidered. Based upon this and other conventional assumptions made in the previous study [7, 8] the
temperature solutions corresponding to the boundary condition of uniform temperature or uniform
heat flux on the surface of the spheres have been obtained respectively as follows:

1. Uniform temperature on the surface of the spheres. For the case in which a uniform temperature is
maintained on the surface of the sphere, the distribution of the heat flux on the surface can be
readily obtained by solving equation (10) for this specific boundary condition. It is given as [3]:

4(@) = T, \/()CVK/nd") (24)
from which
h¢') = /(pCVK/ng). (25)

Inasmuch as the above heat-transfer coefficient, h(¢’), is based upon a unit area on the ¢’ plane,
it must be converted to that based on the spherical coordinates, h(f). These two heat-transfer
coefficients are related by the following equation:

h¢')d¢’ = R* h(6) sin 0 d6. (26)

Accordingly, if equations (25) and (23) are incorporated into equation (26), one obtains, after
simplifying

CVK)* sin2 6 @7

= = A * £
h6) )(¢‘n/R3) ( D J(cos* 8 — 3cos 6 + 2)

R*sinf df (/2=
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from which the expression for the local Nusselt number can be obtained as
hO)D _ 3 sin? 0
Rt P .
K \/2 ) (¢/R°)* P \/(cos3 6 —3cosf +2)

As pointed out earlier, for flow past a single sphere. ¢,/R*® = 20, and hence, for this particular case.
equation (28) reduces to

u(0) = (28)

sin? @
(\/n \/cos30—3cos0+2)‘

To derive the Nussglt number averaged over the entire surface of the sphere, the average heat-
transfer coefficient, h, is first obtained.

Nuy(0) = (29)

2n

h(0) = ij. j )sin #dp df = -3( \/ 2) (¢./R>* (p)CVK/D)*
4 a\\
o0

sin® 6 do
J(cos* 6 — 3cos 6 + 2)
0

_ ( \/ %) (6./RYt (pCVK/D)E.  (30)

The expression for the average Nusselt number, Nu, therefore becomes

= _W_ (]2 ,
Nu=— (\/;>Pe*<¢,,/R3)*. (31)

By substituting ¢,/R> = 2:0 into equation (31), one obtains the average Nusselt number for flow
past a single sphere, i.e.

_ _Petx

Nu = ( \/n Pe (32)
It is interesting to note that equation (32) agrees exactly with the result of Boussinesq’s analysis for
heat-transfer to flow past a single sphere (2). In his analysis, however, only the average heat-transfer
coefficient corresponding to the uniform surface temperature case is given. For flow along a row of
spheres with variable pitch-to-diameter ratio, the appropriate value of ¢,/R? to be used in equation
(31) can be found in Table 2. The significance of the analysis presented in the previous section and the
usefulness of Table 2 thus become obvious.

2. Uniform heat flux on the surface of the spheres. Consideration is next given to the case where
uniform heat flux, q”, is maintained on the surfaces of the spheres. Because the heat flux is area-
dependent, it is necessary to transform ¢” to that based upon the ¢’ coordinates, 4" (¢'). The
following relation exists between the two types of heat fluxes:

q'R*sin6d0 = q"(¢') d¢". (33)

Hence, from equations (33) and (23),

de 4R%q"
AN — 4" R2 — S— 34
q'(¢) = q'R smB———d¢, 3¢, sin’ 0 (34)

* The coefficients for the Nusselt numbers given in Table 1 of [8] are in error because the variable transformation shown
by equation (9) of this paper was not made. For uniform surface temperature case, the coefficient should be that given by
equation (32) in this paper.
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It is necessary to change the sine term appearing in the above equation to that in terms of ¢". To do
this, the cosine terms in equation (23) are converted to sine terms, yielding

\2
sin69+3sin49+4{<1-2$) -1}=0‘ (35)

Solving the above equation for sin? 8, one obtains

cos™ ! {1 - 2(1 - i)z}
$x - L (36)

sin2 @ = 2 cos

3
Substituting this into equation (34) gives
4R? d
q//(¢1) — %'_ _ q 2¢’ 3 . (37)
" cos“{l —2(1 —7>}
2 cos 3 z -1

The solution of equation (10) corresponding to the surface heat flux distribution given by equation
(37) can be written as [3]:

»

Y Ry dr
04(¢") = (mpCVK)~* j q"(¢" — r):/(—T)- (38)
0
By substituting equation (37) into equation (38), one obtains
&
q’ 4R? dr
0o(P) = v (—-) = = :
K)\34¢, " - 2
(rpCVK) \34% cos‘l{l -2|1-=-2 (¢ Y t) }
J7)2cos 3 : -1

q’ 4R?
=————|—|L 9
(7o CVE) (34:;) %9
The integral, I, appearing in the above equation can be evaluated analytically by consecutive
changes of variables in a proper manner. It can be shown that

1=3( %) J3,,_4,,3—n{1—2(%>}

T

3 6

= % (\/%) __Z e | F (sin“ Kg) — F(sin"'K, | (40a)
3t [\/cos(— - )]
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where F designates the incomplete elliptic integral of the first kind and

o= cos"{Z (—?7,) - 1} = cos_l{cosﬂ(cozz b- 3)} {40b)
K = \/l:cos(%—)+—g>/cos(—§——g>J~ (40c)

I S cos (w/3) — 0-5]
i—sm 1{3 *\/[mj} (40d)

Combining equation (39) and equation (40d) thus yields:

and

0u(0) = ~L 2 \/‘ 2 1 (i g
o = 220 \VKCpY) (g [feos@B —mo] | \"" 2

o , _ anZ / 1 ) F(B)
— F(sin 1 K;é)] = 2(\/27[) (\lKCpV \/(¢;:) 1)

where

_ 2 - ’ n e —1 ’
FO = 5 Jos @B = /6) [F (Sm lK’E) - Fein K’é)]'

and, accordingly the local heat-transfer coefficient, hy(8), becomes

7 nKCpV> (/R
= _ 42
i = = (152) 4 “
The heat-transfer coefficient averaged over the surface of the sphere can therefore be obtained as:
n 2R
1 2. NG ( \/chV) - [ sin 6 do
hp = 47:sz R?*sin 0 [hy(0)]dB db = 5 (¢./R?) 0
00 0
from which the following expression for Nuy, is obtained
— 0
Nip = 22 = & pes (g Ryt ruzl:fe;i @)

0

The integral appearing in the above equation was evaluated numerically by using Simpson’s rule.
The average Nusselt number, Nu,, was finally obtained as:

Nuy, = 1:0035 Pe? (¢,/R3). (44)

To obtain the expression for Nu,, the temperature averaged over the surface of the sphere is first
obtained.

HD2 1 4
Bo= g j JR’ sin 00014840 = s (K CpV) jF(B)smOdG
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Consequently,
h, = g—: =4—&/EM(KC;)V)*/JF(G) sin 6.d0
and
N, = WD _ 2AJ/m) @R Pet, )

t[ F(0) sin 6 d6

Once again, the integral appearing in the denominator of equation (45) was evaluated numerically,

thus yielding

Nu, = 09125 Pet (¢./R%)E.

(46)

For flow past a single sphere, ¢,/R> = 20 so that equations (44) and (46) reduce, respectively, to:

Nup = 14192 Pet
Nu, = 12904 Pet.

(47)
(48)

DISCUSSION OF RESULTS AND CONCLUSIONS

In Figs. 2 and 3, the variation of the local
Nusselt number as a function of 6, the angle
measured from the forward stagnation point,
is illustrated for the cases of uniform surface
temperature and uniform surface heat flux,
respectively. In both instances, the local Nusselt
number, Nu;, is seen to decrease from a
maximum value at the forward stagnation
point to a minimum at the rear stagnation point.
This agrees qualitatively with the experimental
observation of Hoe et al. [5] for cylinders. It
can also be observed that Nu,, in general,
decreases as the spacing between the spheres is
reduced. The broken line which is shown for
comparison in each of these figures displays
the behavior of Nu; corresponding to the case
of flow past a single circular cylinder [4]. The
effect of spacing between cylinders cannot be
shown because no heat-transfer analysis on
this problem has been known. Comparison of
the curve for a circular cylinder with that for a
sphere (P/D = oo) reveals that, for the case of
uniform surface temperature, the variation
of Nu; is more gradual for the former than for
the latter. The ratio of Nu; at two angles,

(Nup)p=10-/(Ntg)g=120~ for instance, gives the
value of ~2 for the cylinder while it is about
2-8 for the sphere. It can also be perceived that,
for a constant Péclet number, Nu; is larger for
the sphere than for the cylinder in the forward
sections. This trend is reversed, however, at
0 ~ 100°. Tt should be cautioned that in
calculating the average Nusselt number for the
sphere, the local Nusselt number shown in the
figures is not weighted evenly with respect to
angle, 6. Unlike the case for a cylinder, the
sphere does not extend uniformly in the z-
direction. The weight of Nu;,, therefore, depends
upon the local incremental area which can be
generated by rotating the circle shown in the
figures around the x-—x’ axis. The Nu, at
0 = 90°, for instance, carries much larger weight
than those for 6 near 0° or 180°. For a circular
cylinder, on the other hand, Nu; at any angle
0 weighs equally with respect to angle. By
rigorous integration procedure, it was shown in
the previous section [equation (32)] that for
flow past a single sphere, the average Nusselt
number, Nu is equal to 1:128 Pe?, in agreement
with the result of Boussinesq’s analysis [2].
For a circular cylinder, Nu = 1015 Pe?, as



1706

CHIA-JUNG HSU

UNIFORM SURFACE TEMPERATURE

T T 1T T T

2.0

05

LA 0 O B U B

[ S WO AU W

o

T T 1T T 1 T 1 T 11
SPHERE (PRESENT ANALYSIS)

()P0 =0 (3)PD =11

(2Q)P/D =15 (4)PID =1-0

CIRCULAR CYLINDER, P =
{ REF. [d])

T N T Y O O O O I A

[N SV I U (N T S |

(o)

20 40 60

80

100 120 140 160 180

8,ANGLE FROM THE FRONT STAGNATION POINT, DEGREES

F1G. 2. Illustration of the variation of local Nusselt numbers for constant
surface temperature case.
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FiG. 3. Illustration of the variation of local Nusselt numbers for constant
surface heat flux case.

reported by Grosh and Cess [4]. For the case
of uniform surface heat flux, it can be noticed
from Fig. 3 that the variation of Nu; is relatively
gradual both for the sphere and for the cylinder
except for the part near the rear stagnation point,
where abrupt lowering takes place. Once again,
Nu, is seen to be larger for a sphere in the front
part. The reversal in this case, however, takes
place at 8 =~ 120°.

Turning attention to the average Nusselt
number, it can be concluded from equations
(31, 44, 46), and the computational results
tabulated in Table 2 that, for heat transfer to an
inviscid fluid flowing along a row of spheres, the
average Nusselt number generally decreases as
the spacing between the spheres is reduced.
Significant reduction in the average Nusselt
number, however, does not occur until the pitch-
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to-diameter ratio, P/D, is reduced to about 2-0.
As mentioned in the previous section, the surface
velocity potential factor, ¢./R3, is numerically
equal to 2-0 for P/D = 0. From Table 2, it can
be noticed that its numerical value does not
change significantly until P/D is lowered to
about 2:0. For P/D = 20, ¢./R* = 19276, and
this implies roughly 2 per cent reduction in the
average Nusselt number as compared with the
case of flow past a single sphere. As P/D con-
tinues to diminish toward the limiting value
of 1-0, the value of ¢,,/R? decreases rather rapidly
and finally reaches the value of 1-5639 for a row
of touching spheres. This amounts to ~12 per
cent reduction in the average Nusselt number.
The relatively rapid decrease in the Nusselt
number can be reasoned as follows. It should be
remembered that the present heat-transfer
analysis has been based upon the assumption
of potential flow, in which the fluid stream lines
are considered to be preserved everywhere in
the flow region including the spaces between the
spheres. If the spheres are comparatively far
apart from each other, fluid can obviously dip
into the space between the spheres. On the
other hand, if the spacing between the spheres is
small, the fluid tends to be excluded from the
region near the x-x’ axis (Fig 1), thus forming a
nearly stagnant region. In fact, according to
Michael’s analysis [9], the region near the axis
is essentially stagnant if the row of spheres are
mutually touching. The formation of this fluid-
dynamically stagnant region apparently will
cause deterioration in the over-all heat-transfer
effect, thus lowing the average Nusselt number.
The present heat-transfer analysis predicts this
tendency. Due to the lack of experimental
information, however, verification of the sound-
ness of this analysis has to rely upon future
experimentation. In fact, if the spheres are
actually touching each other, the postulation of
negligible interference of thermal boundary
layers between the adjacent spheres may no
longer be valid. In this case, some deviation from
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the conclusion of this analysis may result. As a
final remark, it should be mentioned that the
validity of approximating the energy equation,
equation (7), by equation (8), was examined in
detail by Rigdon [11], for flow past a single
isothermal sphere. According to Rigdon, the
Boussinesq solution based on such an approxi-
mation falls within 15 per cent of the exact
solution for a Péclet number of 500, and the
deviation between the two solutions does not
exceed 15 per cent when the Péclet number is
lowered to 50. The Boussinesq solution for a
single sphere, therefore, seems to be reasonably
valid in the Péclet number range of 50-500.
The validity of the present analysis is expected
to be confined within the same Péclet number
range, since the same approximation was made.
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Résumé—En supposant que 'écoulement est non visqueux et 3 potentiel on a analysé théoriquement le
transport de chaleur vers des métaux liquides s’écoulant le long d’une rangée de sphéres également espacées,
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dont le rapport du pas au diamétre varie depuis I'unité (sphéres en contact) a I'infini (une seule sphére dans
I’écoulement fluide). Les expressions explicites suivantes pour le nombre de Nusselt moyen ont été obtenues:

— 2
Pour une température de surface uniforme: Nu = < \/ —) Pet (¢, /R3)?}
n

Pour un flux de chaleur de surface uniforme: Nu, = 1,0035 Pet (¢,/R%)*

On a trouvé que le facteur de potentiel de vitesse a la surface, ¢,/R?, qui apparait dans les équations ci-
dessus est fonction uniquement du rapport du pas au diamétre. On a exposé une méthode théorique
d’évaluation des valeurs numériques de ¢,/R3, en utilisant le potentiel vectoriel obtenu récemment par
Michael [9]. En liaison avec ceci, on a obtenu une équation décrivant le potentiel de vitesse le long d’une
rangée de sphéres.

Les valeurs numériques de ¢,/R> ont été déterminées au moyen d’un calculateur numérique IBM. On a
trouvé qu’elles varient de 2,0 pour I’écoulement le long d'une sphére unique  environ 1,5639 pour ’écoule-

ment le long d’une rangée de sphéres en contact.

Zusammenfassung— Unter der Voraussetzung der reibungslosen Potentialstrémung wird eine theoretische
Betrachtung iiber den Warmeiibergang zwischen flilssigen Metallen und einer Reihe von Kugeln, die
gleichen Abstand von einander haben, angestellt. Das Verhiltnis des Abstandes der Kugelmittelpunkte
zum Kugeldurchmesser reicht von eins (sich berithrende Kugeln) bis unendlich (einzelne Kugel in der
Strémung). Folgende explizite Gleichungen fiir die mittlere Nusseltzahl werden angegeben :

— 2
Fiir konstante Wandtemperatur Nu = < \/ —) Pe* (¢,/R3)
T,

Fiir konstante Wirmestromdichte Nup, = 1,0035 Pe? (¢,/R%)}

Es zeigt sich, dass der Potentialfaktor der Oberflichengeschwindigkeit ¢,/R3, der in den obigen Gleich-
ungen enthalten ist, nur eine Funktion des Verhiltnisses der Kugelmittelpunktsabstinde zum Kugel-
durchmesser ist. Es wird eine theoretische Methode entwickelt, um die numerischen Werte von ¢,/R?
berechnen zu konnen. Dabei wird das Vektor-Potential beniitzt, das kiirzlich von Michael [9] angegeben
wurde. Im Zusammenhang damit wird eine Gleichung angegeben, die das Geschwindigkeitspotential
entlang der Kugelreihe beschreibt. Zahlenwerte von ¢,/R® wurden auf einer IBM Rechenanlage bestimmt.
Die Zahlenwerte liegen zwischen 2,0 fiir die Strémung entlang einer einzelnen Kugel und 1,5639 fiir die
Strémung entlang einer Reihe sich beriithrender Kugeln.

AnHOTanMA—B JonyleHnH HeBASKOTO MOTOKA IIPOBENEH TEOPETUYECKUH aHAIN3 TenJo-
06MeHa pAAa PABHO OTCTOHILUMX APYF OT Apyra cep, OMHBACMHX HUAKUM METAILIOM, OTHO-
CHTeAbHHI AT KOTOPHX M3MERAETCH OT eAMHMUMN (compnkacalomuecs cPepl) Ko Gecroney-
HocTH (eAuHmMuHaA cdepa B mOTOKe MUAKOCTH). lloxydenn ciemyioimue BHPaKeHUA AJA
oneHKu cpefHero uncna HyccenbTa : 1ns n30TepMUYECKOH MOBEPXHOCTH

Nii = (v/2/7) Pet (p,8 R®)
A paaﬂomepﬂoro TEIJIOBOro INOoTOKa Ha l’lOBerHOC'l‘ﬂl
Nup = 1,0035 Pet (¢,, RO}

Haitieno, 4T0 B YKAasaHHHX yPAaBHeHUAX KO3QPUUMEHT MOTEHIMANA CKOPOCTH HA MOBepX-

HocT é,/R® aBnsercA QyHKUMeN TOJLKO OTHOCHTENbHOTe wmiara. JLJIA OLEHKM YHMCIEHHHX

aHaueHuit ¢,/R® paspaGoTaH TeOpeTHYECKHH METOJ, B KOTOPOM WCIIOJL30BaH HEJABHO NMOJY-

yennn#t B {9] nmorenuman BexTopa. B cBA3M ¢ 3TMM BHIBEAEHO ypaBHeHMe, ONHCHBaloIce

NIOTEHINAJ CKODPOCTH BHOJNL pemeTku cdep. UMcieHHHe aHaYeHHA ¢, /R® BRYMCIAINCH HA

cuernott mammne. Haitieno, 4ro oun uamenaiorcd ot 2,0 KA NOTOKA, OMBBAKILETO EMHUYHY IO
cdepy, xo ~ 1,5639 maa npepesmsHOro cayvas Kacanus cgep.



